平成３１年度
人間文化創成科学研究科・博士前期課程
理学専攻・物理科学コース
２月入試問題
基礎科目試験問題
（物理科学に関する基礎科目）

試験時間：9:30—12:30

注意事項
（１）4問すべて解答すること。（各問１００点）
（２）解答は各問あたり1枚の答申用紙に記入すること。
（裏面使用可）
（３）答申用紙に問題番号と問題名を記入すること。
（４）監督者の「始め」の合図をするまで、問題冊子を開けないこと。
（５）試験中、用のある場合は挙手をして監督者を呼ぶこと。
基礎科目 力学

以下の問いに答えよ。

質量 m の物体の地上で空気中の放物運動を考える。重力加速度を g とし鉛直下方に重力 mg が作用し、さらに、空気抵抗により物体の速度に比例する摩擦力（粘性力ともよぶ）がはたらくと仮定する。すなわち、速度 \vec{v} の物体は空気の抵抗力 $\vec{F} = -\zeta \vec{v}$ を受ける。

水平方向に x 軸、鉛直上方に y 軸をとる。以後、摩擦係數 ζ を $\zeta = m \beta$ とする。

(1) 物体を鉛直に落下させるとき、鉛直方向の速度 v_y は次の運動方程式を満たすことを説明せよ。

$$m \frac{dv_y}{dt} = -m \beta v_y - mg \tag{1}$$

(2) 物体が高い位置から落下して十分に長い時間が経過するとき、速度は次第に一定値、最終速度に近づく。物体が高い位置から鉛直に落下するとき、その最終速度を求めよ。

(3) 運動方程式 (1) の解を求めよ。ただし、物体の初速度はゼロとする。

ヒント：$w = v_y + g / \beta$ とおいて、変数 w の従う方程式を導き、その解を求めよ。

(4) 物体が水平方向にも運動する場合、水平方向の速度 v_x と鉛直方向の速度 v_y の満たす運動方程式を導け。

(5) 水平方向の初速度を v_{x0} とするとき、物体の水平方向の移動距離には、上限が存在することを示せ。またその原因を簡単に説明せよ。

(6) 物体にはたらく空気抵抗力の水平成分が行う仕事を求めよ。そして、それが水平方向の運動エネルギーの減少分に対応することを示せ。

(7) 物体の初速度を $v_0 = (v_{x0}, v_{y0})$ とするとき、その後の物体の速度の時間変化を求めよ。
質量 m で正電荷 q をもつ電荷粒子の電磁場中における運動に関して以下の問いに答えよ。但し、以下の問において荷電粒子の速度は光速に対して十分小さいものとする。また、真空の誘電率を ε_0 とする。

(1) 図1のように幅lの領域に上から下に一様な電場 E が掛かっているところに向けって左から荷電粒子を速度vで入射したとき、荷電粒子が領域を通過後に角度 θ の方向に飛び出したとする。角度 θ を求めよ。

(2) 問 (1) の領域に電場ではなく紙面を下から上に垂直に貫く磁束密度 B の磁場が存在していた場合に角度 θ を求めよ。

次に質量、電荷および速度が未知の荷電粒子が図2に示す装置に左から入射してきた場合を考える。この装置の領域 A には入射粒子の方向に垂直に一様な電場 E が掛かっており、領域 A を通過後、角度 α 方向に出てきた粒子のみが領域 C に入射するように領域 C の入り口を狭くしてある。領域 C には紙面に垂直に一様な磁場 B が掛かっている。領域 A と C の幅はともに l とする。

(3) この装置に向かって荷電粒子が入射したときに、最終的に領域 C から角度 β の方向に荷電粒子が飛び出してきたとする。このとき、この荷電粒子の質量、電荷について何がわかるか。これらの量について分かることがあれば、その量を式で表せ。

（次ページにつづく）
図 1: 一様な電場または磁場が掛かっている領域を荷電粒子が通過する様子。

図 2: 一様な電場が掛かっている領域 A を通過した荷電粒子が角度 \(\alpha \) の方向に飛び出したときの、一様な磁場がかかっていた領域 C に入射するように設置した装置。
3 基礎科目—物理数学

1. パウリ行列 \(\sigma = (\sigma_x, \sigma_y, \sigma_z) \) の各成分は

\[
\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
\]

で与えられる。以下の問いに答えよ。

(a) \((\sigma \cdot n)^2 \) および \((\sigma \cdot n)^3 \) を求めよ。ここで \(n \) は単位ベクトルであり、\(\sigma \cdot n = (\sigma_x n_x + \sigma_y n_y + \sigma_z n_z) \) である。

(b) \(\theta \) を実数として次の行列 \(S = \exp(i\sigma \cdot n\theta) = \cos \theta + \sin \theta \) の線形結合で表わせ。

2. 関数 \(f(x) \) のフーリエ変換 \(F(k) \) を

\[
F(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dx \, e^{-ikx} f(x)
\]

とする。以下の問いに答えよ。

(a) 関数 \(g(x) = \frac{dx}{dt} f(x) \) のフーリエ変換 \(G(k) \) が \(G(k) = ikF(k) \) を満たすことを示せ。ただし \(f(\infty) = f(-\infty) = 0 \) であることを用いてよい。

次の小問から \(f(x) = e^{-ax^2} \) について考える。ただし \(a \) は正の実数である。

(b) \(F(0) \) を求めよ。

(c) \(\frac{d}{dk} F(k) = -\frac{k}{a} \frac{d}{dk} F(k) \) となることを示せ。

(d) \(F(k) \) を求めよ。

3. 実ベクトル \(\mathbf{r} = xe_x + ye_y + ze_z \)、その大きさ \(r = |\mathbf{r}| \)、および \(\mathbf{r} \) のスカラー関数 \(f(r) \) について以下を求めよ。

(a) \(\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}, \frac{\partial r}{\partial z} \)

(b) \(\text{grad} \ f(r) \)

(c) \(\text{rot} \ r \)
4 基礎科目−量子力学

1次元調和振動子について、粒子の質量をm、角振動数をω、粒子の位置演算子、運動量演算子をそれぞれ\hat{x}、\hat{p}とすると、ハミルトニアンは

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2$$

と表すことができる。ここで、消滅演算子$\hat{a} = \sqrt{\frac{\mu}{2\hbar}}\hat{x} + i\sqrt{\frac{1}{2m\hbar}}\hat{p}$、生成演算子$\hat{a}^\dagger = \sqrt{\frac{\mu}{2\hbar}}\hat{x} - i\sqrt{\frac{1}{2m\hbar}}\hat{p}$、および粒子数演算子$\hat{n} = \hat{a}^\dagger \hat{a}$を定義すると、ハミルトニアン$\hat{H}$は

$$\hat{H} = \hbar \omega \left(\hat{n} + \frac{1}{2} \right)$$

と表すことができる。

次の間に答えなさい。

まず、$\hat{n}|n\rangle = n|n\rangle (n = 0, 1, 2, \cdots)$ とし、時刻$t = 0$において状態$|\phi(0)\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ を準備する。

(1) 時刻tにおける状態$|\phi(t)\rangle$を求めなさい。

(2) 時刻tにおける位置、および運動量の期待値をそれぞれ求めなさい。

(3) 時刻tにおける位置の分散 $(\Delta \hat{x})^2$ を求めなさい。

次に、消滅演算子の固有状態、コヒーレント状態$|z\rangle$を考える。すなわち、$\hat{a}|z\rangle = z|z\rangle$である（ただし、$z$は複素数とする）。

(4) 時刻$t = 0$において$|\phi(0)\rangle = |z\rangle$であるとする。時刻$t$における状態$|\phi(t)\rangle$を求める。必要があれば、規格化されたコヒーレント状態$|z\rangle$は$|n\rangle$を用いて

$$|z\rangle = e^{-|z|^2/2} \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n!}} |n\rangle$$

と表されることを用いてよい。

(5) コヒーレント状態において、位置、および運動量の分散は時間に対して不変であることを説明し、コヒーレント状態が最小不確定性関係を満たすことを示しなさい。
平成31年度
人間文化創成科学研究科・博士前期課程
理学専攻・物理科学コース
2月入試問題
専門科目試験問題
（物理科学に関する専門科目）

試験時間：13:30—15:30

注意事項
（1）4問中2問選択すること。（各問150点）
（2）解答は各問あたり1枚の答案用紙に記入すること。
（裏面使用可）
（3）答案用紙に選択した問題番号と問題名を記入すること。
（4）監督者の「始め」の合図をするまで、問題冊子を開けないこと。
（5）試験中、用のある場合は挙手をして監督者を呼ぶこと。
1 専門科目- 熱・統計力学

熱平衡状態にある巨視的なシステムの性質をグランドカノミカル団体を用いて調べる。ただし、システムの体積を V 、絶対温度を T 、化学ポテンシャルを μ 、ボルツマン定数を k_B 、換算プランク定数を \hbar とする。

(1) システムの粒子数の平均値 \bar{N} が $\bar{N} = k_B T (\partial \Xi / \partial \mu)_{T, V}$ によって与えられることを示せ。ただし、Ξ はこのシステムの大分配関数である。

(2) システムの粒子数の振幅を ΔN とするとき、$(\Delta N)^2 = k_B T (\partial \bar{N} / \partial \mu)_{T, V}$ が成り立つことを示せ。

以下では、システムが質量 m の自由粒子で構成される場合を考える。

(3) システムが N 個の粒子を持つ場合の分配関数が $Z_N = \left(\frac{m k_B T}{2 \pi \hbar^2} \right)^{3N/2} \frac{V^N}{N!}$ で与えられることを用いて大分配関数 Ξ を求めよ。

(4) システムの粒子数の平均値とその振幅を求めよ。

(5) システムの状態方程式を導け。

(6) システムの粒子数がポアソン分布に従うことを示せ。
光の強さを物理的に観測する実験装置を部品から組み立てることを想定し、以下の問いに答えなさい。

（1）光の強さを観測する実験装置に必要な部品をあげなさい。
（2）（1）で答えた部品がどのような原理で働くか説明しなさい。
（3）考えている装置では、（1）で答えた部品をどのように接続するか、図を書き説明を加えなさい。
（4）（3）で作られた装置でどんな量を測定するか答えてなさい。
（5）（4）で答えた量が光の強さとどのように関係するか答えてなさい。
（6）この装置で測定精度を上げるためにできる工夫を列記しなさい。

ただし、ここではゼロから装置を組み立てることを想定しており、照度計など、製品になっているものを買ってきて、光の強さを測るという答えは適当ではありません。
3 専門科目—物性（理論）

図のようにソレノイドコイルを囲む電子の伝導路を考える。このとき、電子のシュレディンガー方程式が

\[\frac{1}{2m} [-ih\nabla + eA(r)]^2 \psi(r) = \varepsilon \psi(r) \]

で与えられるとする。\(A(r) \)、\(\varepsilon \) はそれぞれベクトルポテンシャル、電子のエネルギーである。伝導路は充分微細かつ低温下にあり、電子の非弾性散乱は抑制されているとする。また、電子の運動は伝導路に沿って一次元的であるとして取り扱う。コイルは内部にのみ磁束 \(\Phi \) があり、周囲の磁界はないものとする。よって、伝導路上で磁束密度がゼロである。この系において伝導路に電子波を入射し、分岐点 \(a \) で電子波が分岐、経路 \(c_1, c_2 \) を通って合流点 \(b \) で干渉するようにする。

問1 点 \(a \) の位置を \(r_a \) として関数 \(\lambda(r) \) を次の線積分で定義する：

\[\lambda(r) \equiv \int_{r_a}^r d\mathbf{r}' \cdot \mathbf{A}(r') \]

加えて、上記シュレディンガー方程式で \(\mathbf{A}(r) = 0 \) とおいたとき、それを満たす電子波動関数を \(\psi_0(r) \) とすると。以下の設問に答えよ。

(1) \((-i\hbar \nabla + eA)\psi_0 e^{-i\Phi A} = (-i\hbar \nabla \psi_0) e^{-i\Phi A} \) を示せ。\(\nabla \lambda = A \) を用いてよい。

(2) 電子波動関数 \(\psi_0 e^{-i\Phi A} \) が、上記シュレディンガー方程式を満たすことを示せ。

問2 \(\lambda(r) \) に関して以下の設問に答えよ。

(1) 任意の閉曲線 \(C \) において線積分 \(\oint_C d\mathbf{r} \cdot \mathbf{A} \) が \(C \) 内の磁束を表すことを示せ。

\(C \) を境界とする曲面を \(S \) として \(\oint_C d\mathbf{r} \cdot \mathbf{A} = \iint_S dS \cdot (\nabla \times \mathbf{A}) \) を用いてよい。

(2) \(\lambda(r) \) が積分経路によらず一意に定まる条件を説明せよ。

問3 経路 \(c_i (i = 1, 2) \) を通る電子の波動関数を \(\psi_i(r) \) とおき、点 \(a \) (点 \(b \)) での電子波を再び重ね合わせて書く：

\[\psi(r_a(b)) = \psi_1(r_a(b)) + \psi_2(r_a(b)) \]

各径路上の波動関数は点 \(a \) で \(\psi_0(r_a) \) に一致するものとする：

\[\psi_i(r_a) = \psi_0(r_a) \]

更に、経路 \(c_1 \) を通って点 \(b \) に到達したときの \(\psi_0(r) \) の位相変化分を \(\theta_i \) とする。コイル内部には磁束 \(\Phi \) があることに注意して、点 \(b \) での電子の確率密度 \(|\psi(r_b)|^2 \) を求めよ。

問4 コイル内部の磁束変化に伴い、ab 間での電気伝導度 \(G \) は周期的に変化する。\(G \) は ab 間の複素透過係数 \(t_{ba} = (\psi(r_b)/\psi(r_a)) \) を用いて、

\[G = \frac{2\pi^2}{h^2} |t_{ba}|^2 \]

と書けるものとする。\(G \) を \(\Phi \) の関数として求めよ。またその振動周期 \(\Phi_0 \) を求めよ。
時間内に全部解けなくても自分の考えと計算の方針を明示してください。

フーコーの振り子の回転面がゆっくり回転していくのは、地球自転によるコリオリ力ではなく、地球磁場のローレンツ力によるという主張があります。ただし、あらゆる物質は単位質量あたり一定の電荷をもっているという条件の下での議論です。論破してください。

以下のことを参考にしてもいいです。

1. フーコーの振り子：10m 以上の長い紐と数十キログラムの重りを使い減衰を抑えて長時間振動する振り子。
2. コリオリ力は（質量 m, 速度 v の粒子に対して）$2m v \times \omega_r$ です。ここでの ω_r は自転角速度です。
3. クーロン定数 $k = \frac{1}{4\pi\varepsilon_0} = 9.0 \times 10^9 Nm^2A^{-2}s^{-2}$, 透磁率 μ_0 と $\mu_0\varepsilon_0 c^2 = 1$ の関係がある。c は光速度。
4. 地球磁場（東京でおよそ $0.5G = 5 \times 10^{-5}T$ 程度）は双極型だと近似していいでしょう。双極子 (b) の作る磁場は $B = \frac{\mu_0 b}{4\pi r^3} \left(3\hat{r} (\hat{b}.\hat{r}) - \hat{b} \right)$. \hat{r} は * 方向の単位ベクトル。
5. ローレンツ力は（電荷 e, 速度 v の粒子に対して）$ev \times B$ です。
6. その他関連して気づいたことを考えたことがあればなんでも議論してください。
平成31年度 お茶の水女子大学大学院
人間文化創成科学研究科（博士前期課程）

理学 専攻・化学・生物化学コース

2月院試
専門科目試験問題

試験日：平成31年2月4日（月）
試験時間：9時30分～12時00分

【注意事項】

1. 5問中3問選択すること。（各問100点）

2. 解答は各問題分野あたり1枚の解答用紙に記入すること。
 （裏面使用可）

3. 解答番号欄に、選択した問題分野の番号を記入すること。

4. 監督者が「始め」の合図をするまで、問題冊子を開けない。

5. 試験中、用のある場合は挙手をして監督者を呼ぶこと。
1 物理化学

（1）等核2原子分子について、以下の問i)-iv)に答えよ。

i) 2s原子軌道および2p原子軌道から形成されるO₂分子の分子軌道のエネルギー準位を原子軌道のエネルギー準位との相対関係がわかるように図示せよ。

ii) 問i)の解答の分子軌道のエネルギー準位それぞれに対して、対応する分子軌道の様子を描け。

iii) O₂分子の電子配置を問i)の解答の図に書き加えよ。ただし、電子のスピンの違いを矢印の向きの違いで示せ。

iv) O₂⁺, O₂⁻, O₂²⁻を結合距離の長い順に並べよ。また、判断の根拠を簡潔に説明せよ。

（2）化学熱力学に関する以下の問i)-iii)に答えよ。ただし、Δは変化量（変化後の値から変化前の値を差し引いたもの）を表し、

\[q : \text{系が周囲環境から吸収した熱量} \]
\[E_p : \text{分子間ポテンシャルエネルギーの総和} \]
\[E_k : \text{分子の運動エネルギーの総和} \]
\[H : \text{エンタルピー} \]
\[S : \text{エントロピー} \]
\[G : \text{ギブズエネルギー} \]

とする。

i) 理想気体が断熱膨張したとき、以下の量の符号はどうなるか。

① \(q \) ② \(\Delta E \) ③ \(\Delta E_p \) ④ \(\Delta E_k \)

ii) 298K、1 atm の定温定圧条件下において、H₂O（液体）→H₂O（気体）という変化が起こったとき、以下の量の符号はどうなるか。

① \(\Delta S \) ② \(\Delta G \)

iii) 298K、1 atm の定温定圧条件下において、ベンゼン（液体）とシクロヘキサン（液体）が相互溶解したとき、以下の量の符号はどうなるか。但し、この変化は発熱過程であり、体積変化は無視できるとせよ。

① \(\Delta E \) ② \(\Delta H \) ③ \(\Delta S \) ④ \(\Delta G \)
2 無機化学

(1) 以下の(i) ～ (iv) の語について、100 字程度で例を示しながら説明せよ。
 (i) 電子軌道の遮へい効果
 (ii) ルイス塩基
 (iii) 鎳体生成におけるキレート効果
 (iv) ヤーン-テラー効果

(2) 水素の同位体について、以下の設問に答えよ。
 (i) 水素の同位体を例にならって、全て挙げよ。[例] 1H
 (ii) 同位体の質量の違いによって生じる化合物の化学的、物理的性質の変化の具体的な例を3つ挙げ、なぜそのような変化がもたらされるのかを含めて、それぞれ説明せよ。

(3) 遷移元素を中心金属とした6配位八面体錯体について、以下の設問に答えよ。
 (i) 八面体結晶場におけるd軌道のエネルギー準位図を示せ。
 (ii) [Fe(H₂O)₆]²⁺と[Fe(CN)₆]⁴⁻それぞれの電子配置を、軌道エネルギー準位図に示せ。
 (iii) [Fe(H₂O)₆]²⁺と[Fe(CN)₆]⁴⁻の磁性の違いについて述べよ。
 (iv) [Ti(H₂O)₆]³⁺は赤紫色を呈する。この発色はどのような電子遷移に基づくものであるか、図を用いて説明せよ。
 (v) [Ti(H₂O)₆]³⁺の光吸収スペクトルを測定したところ、2.03 × 10⁴ cm⁻¹付近に吸光度の極大が見られた。この錯体のエネルギー準位の分裂の大きさをJ単位で求めよ。プランク定数hは6.63 × 10⁻³⁴ J s、光速cは3.00 × 10⁸ m s⁻¹を用いよ。
3 有機化学

(1) プテノと次に示す(i)~(iii)の反応剤との反応で得られる主生成物の構造式を書け。その生成物が得られる理由も述べよ。
 (i) HBr (ii) HBr + 過酸化物 (iii) HCl + 過酸化物

(2) 次の(i), (ii)のシクロヘキサン誘導体について、安定なイソマネスク異性体を書け。
 (i) cis 1,4-ジメチルシクロヘキサン
 (ii) cis 1-クロロ-3-エチルシクロヘキサン

(3) 次の反応式に(i), (ii)により生成する置換生成物の構造式を書け。またその違いを説明せよ。

 (i) \[
 \begin{align*}
 \text{Br} & \quad \text{CH}_3\text{O}^- \\
 \text{高濃度} & \quad \text{CH}_3\text{OH}
 \end{align*}
 \]
 (ii) \[
 \begin{align*}
 \text{Br} & \quad \text{CH}_3\text{OH}
 \end{align*}
 \]

(4) 次の反応式 (i)~(iv)における生成物 A~E の構造式および反応機構を示せ。

 (i) \[
 \begin{align*}
 \text{H} & \quad \text{COOCH}_3 \\
 & \quad \text{OH}^- \\
 \end{align*}
 \]

 (ii) \[
 \begin{align*}
 \text{N} & \quad \text{CH}_3\text{COCl} \\
 & \quad 1) \text{CH}_3\text{COCl} \\
 & \quad 2) \text{HCl}, \text{H}_2\text{O}
 \end{align*}
 \]

 (iii) \[
 \begin{align*}
 \text{O}_2\text{N} & \quad \text{HNO}_3, \text{H}_2\text{SO}_4
 \end{align*}
 \]

 (iv) \[
 \begin{align*}
 \text{N} & \quad \text{Br}_2, \text{FeBr}_3 \\
 & \quad 300\degree \text{C}
 \end{align*}
 \]

(5) 次の(i)~(iv)の各組の化合物で、酸性、塩基性の強い方はどちらか。また、その理由も述べよ。

 (i) 酸性度の高い方：安息香酸、pメトキシニン安息香酸
 (ii) 酸性度の高い方：ビロール (C₄H₄N)、シクロペンタジエン (C₅H₆)
 (iii) 塩基性が強い方：アニリン (C₆H₅N)、シクロヘキシルアミン (C₆H₁₄N)
 (iv) 塩基性が強い方：ビロール (C₄H₄N)、ビリジン (C₅H₃N)
4 生物化学

（1）タンパク質を構成する20種類のアミノ酸の中から、ア）〜エ）に該当するアミノ酸を一つ選び、その名称を書け。
ア）酸性アミノ酸
イ）塩基性アミノ酸
ウ）ヒスタミンの前駆体
エ）アドレナリンの前駆体

（2）タンパク質の一次構造、二次構造、三次構造について、それぞれ簡潔に説明せよ。

（3）動物の細胞膜に関するア）〜ウ）の間に答えよ。
ア）SingerとNicolsonにより提唱された細胞膜の構造モデル「流動モザイクモデル」を、脂質、タンパク質、糖鎖がそれぞれどのように配向や局在をしているかがわかるように図で示せ。また、細胞膜の機能については100字程度で説明せよ。
イ）グリセロール脂肪酸は細胞膜の主成分で、グリセロール3-リン酸の誘導体である。グリセロールのC1とC2のそれぞれのヒドロキシ基には、様々な長さや不飽和度の炭化水素鎖をもつ脂肪酸（X1、X2）がエステル結合する。また、リン酸基にはアルコール（Y）がエステル結合する。X1およびX2にパルミチン酸CH₃(CH₂)₁₄COOH（16：0[15]）が、Yとして2-アミノエタノールが結合したグリセロリン脂肪質の構造を書け。（15）炭素原子数：二重結合数
ウ）細胞膜の流動性にはリン脂質の炭化水素鎖の長さや不飽和度が影響する。イ）のリン脂質と比較して、X1およびX2にパルミトレイン酸（16：1）が結合したリン脂質、あるいはステアリン酸（18：0）が結合したリン脂質では、膜の流動性は高く、低くなるか。ア）とイ）のそれぞれについて、理由とともに答えよ。

（4）核酸に関するア）〜イ）の間に答えよ。
ア）DNAとRNAの化学構造の共通点と違いについて簡潔に説明せよ。
イ）以下の文章中の①〜③にあてはまる適切な用語や数字を答えよ。
（1）本領DNAの溶解をある温度以上に加熱すると、（2）の構造が変化して（3）なコンフォメーションの（4）本領に変化する。DNA溶液の粘性は、この変化以前に非常にあるが、変化後は（6）くなる。また、DNA溶液の紫外吸収は加熱することにより（7）するが、これを（8）効果という。
5 分析化学

（1）化合物 X の $2.0 \times 10^{-5} \text{M}$ の濃度の溶液を光路長 1 cm のセルで測定した吸収スペクトルを右の図に示す。以下の問いに答えよ。
 i) 470 nm の吸収における化合物 X のモル吸光係数を求めよ。単位も記すこと。
 ii) 濃度を未知の化合物 X の溶液の吸収スペクトルから濃度を正確に求めるとき、最適な吸収波長はいくつか。理由とともに述べよ。
 iii) 次の語句をすべて含む、吸収スペクトル測定装置の概略図を描き、吸光度の測定原理を説明せよ。

分光器、PC、試料溶液、光源、溶媒、検出器、増幅器

（2）質量 W (mg) の化合物 Y を含む水溶液 100 mL から、クロロホルム 200 mL を用いて、化合物 Y を抽出したい。化合物 Y に関してクロロホルムの水に対する分配係数が 10 であるとき、200 mL のクロロホルムで一回抽出する方法 A、100 mL のクロロホルムで二回抽出する方法 B、50 mL のクロロホルムで四回抽出する方法 C について、それぞれの方法による回収率を求め、抽出回数と回収率の関係について述べよ。

（3）以下の語句の中から 2 つ選び、50 字以内で説明せよ。
 • ネルンストの式
 • 溶解度積定数
 • 重量分析
 • p 関数
 • フレーム発光分析
平成31年度 お茶の水女子大学大学院
人間文化創成科学研究科（博士前期課程）

理学 専攻 ・ 情報科学 コース

一般 入 試
基礎 科 目 試 験

試 験 日： 平成 31年 2月 4日（月）
試 験 時 間： 9時 30分 ～ 12時 00分

【注意事項】

1. 監督者の「始め」の合図があるまで問題冊子を開けないこと。

2. 試験中、用のある場合は手を挙げて監督者を呼ぶこと。
数学基礎

【問題 1】

【1】関数 \(f(x) = x(\log x)^2 \) \((x > 0) \) について，以下の各問いに答えよ。

(1) \(f'(x) \) および \(f''(x) \) を求めよ。

(2) 極限 \(\lim_{x \to +0} f(x) \)，\(\lim_{x \to +0} f'(x) \) を求めよ。

(3) 関数 \(f(x) \) の増減ならびに凹凸を調べて，(2) の結果も考慮して，グラフの概形を描け。

【2】\(a > 0 \) とする。次のパラメータ表示された曲線について，以下の問いに答えよ。

\[x = a(t - \sin t), \quad y = a(1 - \cos t) \quad (0 \leq t \leq 2\pi). \]

(1) 曲線と \(x \) 軸で囲まれた領域の面積を求めよ。

(2) (1) の領域を \(x \) 軸の回りに回転してできる回転体の体積を求めよ。
【問題 2】

【1】行列 \(A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 3 \\ 2 & 2 & 3 & 3 \end{pmatrix} \) について、以下の各間に答えよ。

（1）行列 \(A \) の核 \(\text{Ker}(A) = \{ x \in \mathbb{R}^4 \mid Ax = 0 \} \) を求めよ。

（2）行列 \(A \) の像 \(\text{Im}(A) = \{ y \in \mathbb{R}^3 \mid \exists x \in \mathbb{R}^4, y = Ax \} \) を求めよ。

【2】正方行列 \(B = \begin{pmatrix} 3 & 0 & -1 \\ 1 & 2 & 1 \\ -1 & 0 & 3 \end{pmatrix} \) について、以下の各間に答えよ。

（1）行列 \(B \) の行列式を求めよ。

（2）行列 \(B \) が正則行列か否かを判断し、正則ならば \(B \) の逆行列を求めよ。

（3）行列 \(B \) の固有値と固有ベクトルを求めよ。

（4）行列 \(B \) が対角化ができるか否かを判断し、できるならば適当な正則行列 \(P \) を求めて対角化せよ。
情報基礎

【問題1】以下の設問に答えなさい。

(1) データを「ソートする」とはどのような処理のことを指すのか説明しなさい。また、
ソートにおける「昇順」と「降順」とはどのようなものか説明しなさい。

(2) 以下のC言語の関数sort1はあるソートを示している。この関数はどのような処
理を行うものか、その振る舞いを説明しなさい。

```c
void sort1(int a[], int n)
{
    int i, j;
    for (i = 1; i < n; i++) {
        int tmp = a[i];
        for (j = i; j > 0 && a[j - 1] > tmp; j--)
            a[j] = a[j - 1];
        a[j] = tmp;
    }
}
```

(3) sort1を使って、以下のデータをソートするとき、ソート結果の過程を1ごとに示
しなさい。

```
6 5 4 7 3 10 9
```

(4) sort1の計算量を示しなさい。

(5) sort1を使って、以下に示すそれぞれ7つの数値からなるデータ1及びデータ2を
ソートする。この時、どちらのデータの処理が早く終了するかを、処理内容に基づき
えた理由をつけて説明しなさい。

データ1：6 5 4 7 3 10 9
データ2：1 2 3 4 5 0 6

(6) ソート対象となるデータの並び方によっては、ソート結果を得るまでの処理時間が
短くなる。データがどのような状態の時にそのようなことが起こるか、その際のデー
タの状態を答えなさい。
【問題2】一階述語論理について，以下の各問に答えよ。

【1】x は変項，φ は一階述語論理の論理式とする。

(1) $\forall x \varphi \vdash \exists x \varphi$ をダブロー法によって証明せよ。

(2) $\forall x \varphi \vdash_{NK} \exists x \varphi$ を自然演繹によって証明せよ。

【2】一階述語論理の解釈 $I = \langle \langle D_M, F_M \rangle, g \rangle$（ただし D_M は領域，F_M は名前，述語の対応付け，g は変項の割り当て）においては，一般に D_M は空ではない集合と仮定する。以下，その理由について考察する。

(1) 割り当て g とは何から何への写像であるか説明せよ。

(2) 仮に D_M が空とすると，割り当てが存在するためには，一階述語論理の記号はどのような条件を満たさなければならないか。

(3) 対応付け F_M は名前の集合から D_M への写像を含むが，仮に D_M が空とすると，このような写像が存在するためには，一階述語論理の記号はどのような条件を満たさなければならないか。

(4) 一階述語論理の記号が (2)(3) の条件を満たすとき，項の集合にはどのような項が含まれるか。

(5) D_M が空ではない集合であるという仮定と，【問題2】【1】(1)(2) との関係を述べよ。